36529

Sl. No.

100132

B.Sc. V Semester Degree Examination, September/October - 2023

PHYSICS - V

5.1 : Atomic and Molecular Physics

(CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: Write answers to Section - A questions in first two pages only.

SECTION-A

Answer the following:

- 1. Define atomic mass unit.
- 2. What is the specific charge of an electron?
- 3. Who discovered nucleus of an atom?
- 4. What will be the energy of emitted photon when an electron jumps from third orbit to the ground state?
- 5. Mention any one failure of Rutherford's model of an atom.
- 6. State Pauli's exclusion principle.
- 7. What is Stark effect?
- 8. Name the molecular spectra observed in IR region.
- 9. What is fluorescence?
- 10. State Franck-Condon principle.
- 11. What are Eigen values?
- 12 Mention any one application of Raman effect.
- 13. What is Raleigh's scattering of light?
- 14. What is the composition of Ruby Rod?
- 15. What is optical pumping?

SECTION-B

	Ans	wer any five of the following:	x5=25			
16.	Des	cribe the construction and working of Dempster's mass spectrograph.				
17.	Wri	te a note on Sommerfeld's model of an atom.				
18.	Des	cribe Stern-Gerlach experiment.				
19.	Disc	cuss J-J coupling scheme.	•			
20.	Explain Fluorescence. Mention its applications.					
21.	Describe the experimental study of Raman effect.					
22.	-	lain, in brief spontaneous and stimulated emission with Einstein co-efficie ation.	nt			
		SECTION-C				
	Ans	wer any three or the rollowing .	10=30			
23.	Ans (a)	Explain J.J. Thomson's method of determining the specific charge of a electron.	n 7+3			
23.		Explain J.J. Thomson's method of determining the specific charge of a	n 7+3 If			
	(a) (b)	Explain J.J. Thomson's method of determining the specific charge of a electron. A drop of oil of radius 10^{-6} m carries a charge equal to that of an electron. the density of the oil is 2×10^3 kg m ⁻³ , find the electric field required to kee it stationary.	7+3 If ep			
23. 24.	(a) (b)	Explain J.J. Thomson's method of determining the specific charge of a electron. A drop of oil of radius 10^{-6} m carries a charge equal to that of an electron. the density of the oil is 2×10^3 kg m ⁻³ , find the electric field required to keep	n 7+3 If			
	(a) (b) (a) (b)	Explain J.J. Thomson's method of determining the specific charge of a electron. A drop of oil of radius 10^{-6} m carries a charge equal to that of an electron. the density of the oil is 2×10^3 kg m ⁻³ , find the electric field required to kee it stationary. State the postulates of Bohr's theory of hydrogen atom. Describe Frank-Hertz experiment. Derive an expression for pure rotational spectral energy of a diatomic	7+3 If ep			
24.	(a) (b) (a) (b)	Explain J.J. Thomson's method of determining the specific charge of a electron. A drop of oil of radius 10^{-6} m carries a charge equal to that of an electron. the density of the oil is 2×10^3 kg m ⁻³ , find the electric field required to kee it stationary. State the postulates of Bohr's theory of hydrogen atom. Describe Frank-Hertz experiment.	7+3 If ep 5+5			
24.	(a) (b) (a) (b) (a)	Explain J.J. Thomson's method of determining the specific charge of a electron. A drop of oil of radius 10^{-6} m carries a charge equal to that of an electron. the density of the oil is 2×10^3 kg m ⁻³ , find the electric field required to kee it stationary. State the postulates of Bohr's theory of hydrogen atom. Describe Frank-Hertz experiment. Derive an expression for pure rotational spectral energy of a diatomic molecule as rigid rotator.	7+3 If ep 5+5			

Write a note on holography.

(b)

36530

Sl. No.

100113

B.Sc. V Semester Degree Examination, September/October - 2023 PHYSICS - VI

5.2: Statistical Physics, Quantum Mechanics and Electronics (CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: Write answer to Section - A Questions in the first two pages only.

SECTION-A

I. Answer all the following questions.

- 1. What is an ensemble?
- 2. What is Stirling's approximation?
- 3. Can matter wave travel faster than light?
- 4. State Heisenberg uncertainty principle.
- 5. What is a wave function?
- 6. What is zero point energy?
- 7. Define conduction band.
- 8. What are dopants?
- 9. Name the factor on which electrical conductivity of a conductor depend.
- 10. What are rectifiers?
- 11. Define ripple factor.
- 12. Give the relation between α and β .
- 13. What is photo diode?
- 14. Expand LED.
- 15. Give any one application of liquid crystals.

II. A	nswer	any	five	of	the	following.
-------	-------	-----	------	----	-----	------------

5x5 = 25

- 16. Derive an expression for Boltzmann equipartion theorem.
- 17. Illustrate Heisenberg's uncertainty principle by gamma-ray microscope.
- 18. Explain the physical significance of wave function.
- 19. Derive Eigen values for linear Harmonic oscillator.
- 20. Distinguish between Intrinsic and Extrinsic Semiconductors.
- 21. Explain the transistor as an amplifier in CE mode with a neat circuit diagram.
- 22. Explain the working principle of solar cell.

SECTION - C

III. Answer any three of the following.

3x10=30

- 23. (a) Explain Maxwell-Boltzmann distribution function and Fermi-Dirac 6+4 distribution function.
 - (b) Write a note on Gibb's paradox.
- 24. (a) Derive an expression for de-Broglie's wavelength.

5+5

- (b) Explain Davisson and Germer experiment.
- 25. (a) Describe time-independent Schrodinger wave equation.

6+4

5+5

- (b) What is the lowest energy in Mev that a neutron can have if it is confined to move along the edge of an impermeable box of length 10^{-14} m. Mass of neutron = 1.67×10^{-27} kg.
- **26.** (a) Derive an expression for electrical conductivity of a semiconductor.
 - (b) Obtain an expression for Hall co-efficient.
- 27. (a) Explain construction and working of a Bridge rectifier with neat circuit 6+4 diagram.
 - (b) Write the applications of LED.

36523

V Semester B.Sc. Degree Examination, September/October - 2023 CHEMISTRY - V

5.1

100225

(CBCS-NEW)

Time: 3 Hours

Maximum Marks: 70

Note: (i) Section - A contains questions from Inorganic, Organic and Physical Chemistry.

(ii) Section - B contains questions from Inorganic Chemistry.

Section - C contains questions from Organic Chemistry.

Section - D contains questions from Physical Chemistry.

(iii) Answer all the four sections A, B, C and D.

SECTION - A

Answer any ten of the following questions.

- 1. Define magnetic susceptibility.
- 2. What is meant by Spectrochemical Series?
- 3. What is Spectroscopic ground state term for d configuration?
- **4.** Write the structure of S_4N_4 .
- 5. What is down field shift?
- **6.** What are the non-equivalent protons?
- 7. Write the reaction product when diethyl sulphide is undergoes oxidation with $conc.HNO_3$.
- 8. Give any two examples for aromatic acids.
- 9. State Einstein's law of photochemical equivalence.
- 10. State Grothus Draper's law.
- 11. Define quantum yield.
- 12. What is Photo Sensitization?

	Ans	swer any two of the following questions. 2x10	=20					
13.	(a)	Explain with neat diagram, how the magnetic susceptibility and moment are measured by Guoy's method.						
	(b)	Explain the type of Electronic Transitions.						
14.	(a)	Give a brief account on Diamagnetism, Ferromagnetism and	6					
	(b)	antiferromagnetism. Explain the spectra of an octahedral complex of d configuration with an example.						
15.	(a) (b)	Give the preparation and properties of (NPCl ₂) ₃ . How the Magnetic Susceptibility varies with temperature ? Explain.	6 4					
	SECTION - C							
	Ans	swer any two of the following questions. 2x10=	=20					
16.	(a)	Describe the methods of synthesis of α - amino acids from strecker and Gabriel's Phthalimide methods.	6					
	(b)	Write a note on acid-base behaviour of amino acids.						
17.	(a)	Give any two methods of preparation and chemical reactions of ethyl mercaptan.	6					
	(b)	Write a note on basic components of spectrophotometer.	4					
18.	(a) (b)	Explain the salient features and applications of Infra-red Spectroscopy. Explain the following terms in brief: (i) $(n+1)$ rule.	6 4					
		(ii) Chemical shift						
		SECTION - D						
	Ansv	wer any two of the following questions. 2x10=	20					
19.	(a)	Give the clausius - Mesoti equation. Explain the terms and discuss its	6					
	(b)	Importance. Discuss the applications of dipole moment on elucidating the structure of BF_3 and CO_2 .	4					
20.	(a) (b)	State and derive Lamberts - Beers law for light adsorptions by solutions. Calculate the Einstein's energy for the radiation of wavelength 4000°C.	6					
21.	(a) (b)	Discuss the mechanism of photochemical decomposition of hydrogen iodide. Write a note on photo inhibition.	6 4					

B.Sc. V Semester Degree Examination, September/October - 2023 CHEMISTRY - VI

5.2

(CBCS - New)

100182

Time: 3 Hours

Maximum Marks: 70

Note: (i) Section - A contains questions from Inorganic, Organic and Physical Chemistry.

- (ii) **Section B** contains questions from Inorganic Chemistry, **Section C** contains questions from Organic Chemistry, **Section D** contains questions from Physical Chemistry.
- (iii) Answer all the four sections A, B, C & D.

SECTION - A

Answer any ten of the following questions.

- 1. Define Absolute error.
- 2. Salt solutions conduct electricity better in liquid NH₃ than in their aqueous solutions. Give reason.
- 3. Define nuclear fission.
- 4. What is mass defect?
- 5. Define epimerisation.
- 6. Write the composition of oil.
- 7. Write one use of Nylon.
- 8. What is Malachite green?
- 9. Define Specific Conductance.
- 10. What is ionic conductance?
- 11. Define transport number.
- 12. Define degree of Polymerization.

	Answ	ver any two of the following questions.	20
13.	(a) (b)	Discuss briefly Sampling of solids, liquids and gases. Differentiate between accuracy and precision.	6 4
14.	(a) (b)	Discuss the Solubility of alkali and alkaline earth metals in liquid ammonia. Give any two Chemical reactions of liquid ${\rm SO}_2$.	6 4
15.	(a) (b)	Discuss the shell model of nucleus. Explain nuclear fusion with two examples.	6 4
		SECTION - C	
	Ansv	wer any two of the following questions. 2x10=	20
16.	(a) (b)	Explain Keto-enol tautomerism in ethylacetoacetate. Write a note on chain shortening in aldoses.	6 4
17.	(a) (b)	How do you determine iodine number of oils and fats? Give two uses of teflon and terylene.	6 4
18.	(a)	Explain the elucidation of open-chain structure of D-glucose.	6
	(b)	Write the Synthesis of methyl orange.	4
		SECTION - D	
	Ans	wer any two of the following questions. 2x10=	20
19.	(a)	Describe the methods of determination of solubility, solubility product of sparingly soluble salts by conductance method.	6
	(b)	Define equivalent conductance. Explain the variation of equivalent conductance of strong electrolytes with dilution.	4
20.	(a)	Explain the method of determination of molecular weight of polymers by viscosity method.	6
	(b)	Write a note on advantages of conductance titrations.	4
21.	(a)	Describe the experimental method of determination of transport number by Hittorf's method for non-attackable electrodes.	6
	(b)	The resistance of a decinormal solution of a salt when measured by a cell is 40 ohm. The cell constant was found to be 0.52 cm^{-1} . Calculate specific and equivalent conductance of the solution.	4

36531

B.Sc. V Semester Degree Examination, September/October - 2023 MATHEMATICS

IX: Integral Transforms

(CBCS)

100182

Time: 3 Hours

Maximum Marks: 70

Note: Answer all the Sections.

SECTION - A

Answer any five of the following.

5x2=10

- 1. Find $L[(1+t)^3]$.
- **2.** Find $L[e^{6t} \cdot 8^t]$.
- 3. Find L[cos²6t].
- **4.** Using convolution theorem find $L^{-1}\left[\frac{1}{(S+1)}\frac{1}{(S+2)}\right]$.
- 5. If $f(x) = x^2$ in $(-\pi, \pi)$, then find Fourier coefficient of a_n .
- **6.** If f(S) is the Fourier transform of F(x), then prove that $\frac{1}{a} f\left(\frac{S}{a}\right)$ is Fourier transform of F(ax).
- 7. Find z-transform of e^{-an} .

SECTION - B

Answer any five of the following.

5x6=30

- 8. Evaluate $L[4 \cdot \sin^2 t \cos 2t]$.
- **9.** Verify Convolution theorem for $f(t) = e^t$ and $g(t) = \cos t$.
- 10. Find inverse Laplace of $\frac{1}{S(S+1)(S+2)}$.

- 11. Solve $\frac{dx}{dt} = x 2y$ and $\frac{dy}{dt} = -2x + y$ given that x(0) = 1, y(0) = 2.
- 12. Find the Fourier series of function f(x) = |x| in $-\pi < x < \pi$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$
- 13. Find the Fourier expansion for the function $f(x) = \begin{cases} -1 & ; & -3 < x < 0 \\ 0 & ; & x = 0 \\ 1 & ; & 0 < x < 3 \end{cases}$
- 14. Find the complex form of Fourier series for the function $f(x) = \begin{cases} -k & ; & -\pi < x < 0 \\ k & ; & 0 < x < \pi \end{cases}$

Answer any five of the following.

5x6=30

- **15.** Find the Fourier transform of $f(x) = \begin{cases} 1 & ; |x| \le 1 \\ 0 & ; |x| > 1 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.
- 16. Find Fourier sine and cosine transform of $7e^{-6x} + 8e^{-9x}$.
- 17. Using Parseval's Identity for Fourier cosine transform show that $\int_{0}^{\infty} \frac{\sin ax}{x(a^2 + x^2)} dx = \frac{\pi(1 e^{-a^2})}{2a^2} \text{ where a>0.}$
- 18. If $Z_T(Un) = \overline{U}(z)$ then prove that $Z_T(Un k) = Z^{-k}\overline{U}(z)$ when k>0.
- 19. Find Inverse z-transform of $\frac{3z^2}{(5z-1)} + \frac{2z}{(5z+2)}$.
- Find the z-transform of cosnθ and sinnθ.
- **21.** Solve $y_{n+1} + \frac{1}{4}y_n = \left(\frac{1}{4}\right)^n$ where $y_0 = 0$ by using z-transform.

36532

Sl. No.

100114

B.Sc. V Semester Degree Examination, September/October - 2023

MATHEMATICS - X

5.2 : Applied Mathematics

(CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: Answer all the sections.

SECTION - A

Answer any five of the following questions.

5x2=10

- 1. If $\phi(x, y, z) = 3x^2 2y 3z$ find $|\nabla \phi|$ at (2, 1, -3).
- 2. Find the maximal directional derivatives of $x^2y+yz^2-xz^3$ at (-1, 2, 1).
- 3. If $\overrightarrow{F} = x^2yi + y^2zj + z^2xk$ find curl (curl \overrightarrow{F}) at (1, 1, 1).
- 4. State stoke's theorem.
- 5. Write one-dimensional heat equation and write its appropriate solution.
- 6. Define Geodesics and Isoperimetric problems.
- 7. Find C.F of (3D-4D'-2)z=0.

SECTION - B

Answer any five of the following questions.

5x6 = 30

- **8.** Prove that curl (curl \overrightarrow{F}) = grad (div \overrightarrow{F}) $-\nabla^2 \overrightarrow{F}$.
- 9. If r = xi + yj + zk, then show that r^n , r is an irrotational vector for any value of n. But is solenoidal only when n = -3.

- 10. State and prove Green's Theorem in the plane.
- 11. Using Gauss divergence theorem, Evaluate.

$$\iint_{S} \left[x^{2} dy dz + y^{2} dz dx + 2z(xy - x - y) dx dy \right]$$
 where S is the surface of the cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1.$

- 12. By stokes theorem prove that curl (grad ϕ) = 0.
- 13. Find the Extremal of the functions:

$$I = \int_{0}^{\pi/2} \left[y^2 - (y')^2 - 2y \sin x \right] dx \text{ given boundary value conditions } y(0) = y\left(\frac{\pi}{2}\right) = 0.$$

Answer any five questions.

5x6=30

- **14.** Solve $(D^2 5DD' + 4D'^2)z = \sin(4x + y)$.
- 15. Solve $(D^2 2DD' + D'^2)z = 12xy$.
- **16.** Solve $(2DD' + D'^2 3D')z = 5 \cos(3x 2y)$.
- 17. Solve $(D-3D'-2)^2z=2e^{2x}$.tan(y+3x).
- **18.** Reduce the equation $\frac{\partial^2 z}{\partial x^2} + x^2 \frac{\partial^2 z}{\partial y^2} = 0$ to a cannonical form.
- 19. Obtain the solution for one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by using the method of separation of variable.

36521

Sl. No.

100077

B.Sc. V Semester Degree Examination, September/October - 2023

BOTANY - V

5.1: Morphology, Taxonomy and Economic Botany (CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: (i)

Answer **all** the questions.

(ii) Draw diagrams wherever necessary.

SECTION - A

I. Answer the following questions.

- 1. What are Vitae?
- 2. What is systematic Botany?
- 3. Who proposed Binomial Nomenclature?
- 4. What is Corollary Corona?
- 5. What is phyllogenetic system of classification?
- 6. What is offset? Give an example.
- 7. What are tendrils?
- 8. What is lomentum?
- 9. What is Herbarium?
- 10. What is Aestivation?
- 11. Write the Botanical name of clove.
- 12. What is Spike? Give an example.
- 13. Differentiate between cladode and phylloclade.
- 14. Define Androceium.
- 15. What is Napiform root? Give an example.

II. Answer any five of the following.

5x5 = 25

- 16. Explain epigynous and hypogynous flowers.
- 17. Describe the salient feature of family malvaceae.
- 18. What is fruit? Explain different types of fleshy fruits.
- 19. What is Inflorescence? Explain cyathium Inflorescence with diagram.
- 20. Mention any four fiber yielding plants and give their Botanical names.
- 21. Describe underground modification of root with example.
- 22. Distinguish between Apocyanaceae and Solanaceae.

SECTION - C

III. Answer any three of the following.

3x10=30

- 23. Define a stem and explain different aerial stem modification.
- 24. Write the distinguishing character of family papilionaceae.
- 25. What is leaf? Explain different types of compound leaves.
- 26. Assign the following plants to their respective families with their Botanical names:
 - (a) Mustard
 - (b) Cotton
 - (c) Sugarcane
 - (d) Wheat
- 27. What is Placentation? Describe various forms of placentation with a neat labelled diagram.

-000-

36522

No. of Printed Pages: 2

Sl. No.

100064

B.Sc. V Semester Degree Examination, September/October - 2023

BOTANY - VI

5.2 : Cell Biology and Cytogenetics (CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: (i) Answer all the questions.

(ii) Draw the diagram wherever necessary.

SECTION - A

I. Answer all the following questions :

- 1. Give difference between Prokaryotic and Eukaryotic cell.
- 2. What are peroxisomes?
- 3. Write the functions of vessicles in plant cell.
- 4. Who proposed the fluid mosaic model?
- 5. What is down syndrome?
- 6. Give difference between DNA and RNA.
- 7. What is the concept of Erwin Chargaff?
- 8. What are purines and pyramidines?
- 9. What are allels?
- 10. Define Linkage.
- 11. Who coined the term gene?
- 12. Define heredity.

2

- 13. Write any two beneficial effect of gene mutation.
- 14. Who re-discovered the inheritance?
- 15. Define the gene epistasis.

SECTION - B

II. Answer any five of the following questions:

5x5 = 25

- 16. Explain the DNA replication.
- 17. Write the properties of genetic code.
- 18. Write a note on Golgi apparatus with neat labelled diagram.
- 19. Give an account on supplementary factors with examples.
- 20. Explain Allopolyploidy with reference to the Brassica.
- 21. Describe the melandrium for sex determination.
- 22. Write a note on central dogma of molecular biology.

SECTION - C

III. Answer any three of the following questions :

3x10=30

- 23. Explain the Law's of Mendel.
- 24. Enamurate the self sterility in Nicotiana.
- 25. Explain the mechanism involved in synthesis of protein.
- 26. What type of gametes will be produced by the pea plant in the following crosses? And find out the phenotypic ratio of offsprings.
 - (i) $YyRr yyrr \rightarrow YyRR \times yyrr$
 - (ii) $YyRr \times YyRR \rightarrow YyRr \times Yyrr$
 - (iii) Yyrr×yyRR → YyRr×YyRr
- 27. Explain the double helix model of DNA with neat labelled diagram.

Sl. No.

100052

B.Sc. V Semester Degree Examination, September/October - 2023

ZOOLOGY - V

Z-5.1 : Cell Biology and Developmental Biology (CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: (i) Answer all questions.

(ii) Draw diagrams wherever necessary.

SECTION - A

Answer any five of the following.

5x2=10

- Expand RER and SER.
- Define Synapsis and Chiasmata.
- 3. What is Oncology? Name any two chemical carcinogens.
- 4. Define Fertilizin and Antifertilizin.
- 5. What is Amphimixes?
- **6.** Mention the Hydrolytic enzyme found in Acrosome of Human Sperm and write its functions.

SECTION - B

A. Answer any four of the following.

4x5 = 20

- 7. Write short notes on Germ Plasm Theory.
- 8. Sketch and label Hen's Egg.
- 9. Sketch and label 36 hrs (WM) chick embryo and add a brief note on it.
- 10. Describe V.S. of Blastula of Frog.
- 11. What is Organiser Phenomenon and write a short note on it?
- 12. Enumerate the functions of placenta.

B. Answer any two of the following.

2x5=10

- 13. Distinguish between Mitosis and Meiosis.
- 14. Explain the structure of Nucleus with a neat labelled diagram.
- 15. Sketch and label.
 - (a) Fluid Mosaic Model of Plasma membrane.
 - (b) Mitochondria.

A. Answer any two of the following.

2x10=20

- 16. Explain 24 hrs (WM) chick embryo with labelled diagram.
- 17. What are Extraembryonic membranes? Explain in detail about Extraembryonic membranes of chick.
- 18. (a) Define following terms:
 - (i) Spermiogenesis.
 - (ii) Selfing and Crossing.
 - (iii) Artificial Insemination and TTB.
 - (b) Mention the points of differences between Spermatogenesis and Oogenesis.
- **B.** Answer **any one** of the following.

1x10=10

- 19. Explain the different stages of Mitosis with neat labelled diagrams.
- 20. Explain Occurrence types, Structure and Functions of Endoplasmic Reticulum.

- 0 O o -

Sl. No.

100065

B.Sc. V Semester Degree Examination, September/October - 2023 ZOOLOGY - VI

Z-5.2: Environmental Biology and Wildlife Zoology (CBCS)

Time: 3 Hours

Maximum Marks: 70

Note: (i) Answer all the questions.

(ii) Draw neat labelled diagrams wherever necessary.

SECTION - A

Answer any five of the following in a sentence or two each.

5x2=10

- 1. Define Ecotype.
- 2. Expand IUCN and CITES.
- 3. What are Lithosphere and Hydrosphere?
- 4. Mention any four abiotic factors.
- 5. Define Red data book and Green data book.
- 6. Define food web and food chain.

SECTION - B

Answer any six of the following in a paragraph each.

6x5 = 30

- 7. Explain briefly about nitrogen cycle.
- 8. Write a short note on lentic habitat with examples.
- 9. Give an account on the zonation of sea.
- 10. Explain briefly on Artificial ecosystem.
- 11. Explain the role of NGO's in Environmental Monitoring.
- 12. Write a short note on thermal stratification.
- 13. Mention the ecological adaptations of Aerial animals.

36538

SECTION - C

2

Answer any three of the following in detail.

3x10=30

- 14. Explain in detail about sound pollution.
- 15. Illustrate the flow of energy in ecosystem with the help of energy pyramid.
- 16. Describe the types of conservation of Wildlife.
- 17. Describe project tiger in detail.

-000-

